Below is a bibliography of cryoconite literature that may help those looking for material in this field. I will endeavour to regularly update this with omissions and new work! If you are a cryoconite researcher/enthusiast and you notice anything I’ve missed, please let me know so I can make this as complete as possible!

CRYOCONITE BIBLIOGRAPHY
Abyzov, S.S. 1993. Microorganisms in Antarctic ice. In Antarctic Microbiology, Friedmann, E.I (ed) Princeton University Press, Princeton, NJ, USA: 265-295
Adhikary, S., Nakawo, M., Seko, K., Shakya, B. 2000. Dust influence on the melting process of glacier ice: experimental results from Lirung Glacier, Nepal Himalayas. In Nakawo, M., Raymond, C.F. and Fountain, A (eds). Debris-covered glaciers. Proceedings of an International Association of Hydrological Sciences Workshop, Seattle, Wallingford, AHS Publication 264, 43-52
Agassiz, L. 1846. Systeme Glaciere: ou recherches sur les glaciers leur mécanisme, leur ancienne extension et le rôle qu’ils ont joué dans l’histoire de la terre. Paris, Victor Masson
Ahlmann, H.W. 1942. Researches on snow and ice. The Geographical Journal, 107 (1-2): 11-25
Anesio, A.M., Laybourn-Parry, J. 2011. Glaciers and ice sheets as a biome. Trends in Ecology and Evolution, 27 (4): 219-225
Anesio, A.M., Mindl, B., Laybourn-Parry, J., Hodson, A.J., Sattler, B. 2007. Viral dynamics in cryoconite on a high Arctic glacier (Svalbard). Journal of Geophysical Research, 112 (G4): G04S31
Anesio, A.M., Hodson, A.J., Fritz, A., Psenner, R., Sattler, B. 2009. High microbial activity on glaciers: importance to the global carbon cycle. Global Change Biology, 15(4): 955-960
Anesio, A.M., and 6 others. 2010. Carbon fluxes through bacterial communities on glacier surfaces. Annals of Glaciology, 51 (56): 32-40
Anesio, A.M., Sattler, B., Foreman, C., Telling, J., Hodson, A., Tranter, M., Psenner, R. 2010. Carbon fluxes through bacterial communities on glacier surfaces. Annals of Glaciology, 51 (56): 32-40
Aoki, T., Kuchiki, K., Niwano, M., Matoba, S., Uetake, J. 2013. Numerical simulation of spectral albedos of glacier surfaces covered with glacial microbes in Northwestern Greenland. Radiation Processes in the Atmosphere and Ocean, AIP Conference Proceedings, 1531, 176-179
Arbona, V., Argamasilla, R., Gomez-Cadenas, A. 2010. Common and divergent physiological, hormonal and metabolic responses of Arabidopsis thaliana and Thellungiella halophila to water and salt stress. Journal of Plant Physiology, 167: 1342-1350
Bagshaw, E.A., Tranter, M., Fountain, A.G., Welch, K.A., Basagic, H., Lyons, W.B. 2007. Biogeochemical evolution of cryoconite holes on Canada Glacier, Taylor Valley, Antarctica. Journal of geophysical Research, 112 (G04S32), doi: 10.1029/2006JG000350
Bagshaw, E.A., Tranter, M., Fountain, A.G., Welch, K., Basagic, H.J., Lyons, W.B. 2013. Do cryoconite holes have the potential to be significant sources of C, N and P to downstream depauperate ecosystems of Taylor Valley, Antarctica? Arctic, Antarctic and Alpine Research, 45 (4): 1-15
Barkstrom, B.R. 1972. Some effects of multiple scattering on the distribution of solar radiation in snow and ice. Journal of Glaciology, 11 (63): 357-368
Battin, T.J., Wille, A., Sattler, B., Psenner, R. 2001. Phylogenetic and functional heterogeneity of sediment biofilms along environmental gradients in a glacial stream, Applied and Environmental Microbiology, 67, 799 – 807.
Bayley, W.S. 1891. Mineralogy and Petrography. The American Naturalist, 25 (290): 138-146
Bellas, C., Anesio, A.M. 2013. High diversity and potential origins of T4-type bacteriophages on the surface of Arctic glaciers. Extremophiles,17: 861-870
Bellas, C.M., Anesio, A.M.B., Telling, J., Stibal, M., Tranter, M., Davis, S.A. 2013. Viral impacts on bacterial communities in Arctic cryoconite. Environmental Research Letters, vol 8.
Bøggild, C.F. 2011. Modeling the temporal glacier ice surface albedo based on observations of aerosol accumulation. American Geophysical Union, Fall Meeting 2011, abstract #C41F-04
Bøggild, C.F., Brandt, R.E., Brown, K.J., Warren, S.G. 2010. The ablation zone in northeast Greenland: ice types, albedos and impurities. Journal of Glaciology, 56: 101-113
Bolsenga, S.J. 1977. Preliminary observations on the daily variation of ice albedo. Journal of Glaciology, 18 (80): 517-521
Bowman, J.P., McCammon, S.A., Brown, M,., Nichols, D.S., McMeekin, T.A. 1997. Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl. Environ. Microbiol. 63 (8): 3068-3078
Box, J.E., Fettweis, X., Stroeve, J.C., Tedesco, M., Hall, D.K., Streffen, K. 2012. Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers. The Cryosphere, 6: 821-839
Brandt, B. 1931. Uber kryokonit in der Magdalenenbucht in Spitsbergen. Zeitschrift fur Gletscherkunde, 19 (1-3): 125-126
Brandt, R.E., Warren, S.G.1993. Solar-heating rates and temperature profiles in Antarctic snow and ice, Journal of Glaciology, 39: 9910
Brochu, M. 1975. Les trous a cryoconite du glacier Gillman (nord de l’ile d’Ellesmere). Polarforschrung, 45 (1): 32-44
Brunetti, C., George, R.M., Tattini, M., Field, K., Davey, M.P. 2013. Metabolomics in plant environmental physiology. Journal of Experimental Botany, doi:10.1093/jxb/ert244
Buhlmann, E. 2011. Influence of particulate matter on observed albedo reductions on Plaine Morte glacier, Swiss Alps. MSc Thesis, University of Bern, 2011
Bryce, D. 1897. Contributions to the non-marine fauna of Spitsbergen – Part II. Report on the Rotifera. Proceedings of the Zoological Society of London, 1897: 793 – 799
Bryce, D. 1922. On some Rotifera from Spitsbergen. The Oxford University Expedition to Spitsbergen, 1921. Report 16. J. Quekett microscopy club, Series 2, 14 (88): 305-332
Cameron, K., Hodson, A.J., Osborn, M. 2012. Carbon and nitrogen biogeochemical cycling potentials of supraglacial cryoconite communities. Polar Biology, 35: 1375-1393
Cameron, K. a, Hodson, A. J., & Osborn, a M. (2012). Structure and diversity of bacterial, eukaryotic and archaeal communities in glacial cryoconite holes from the Arctic and the Antarctic. FEMS microbiology ecology, 82(2), 254–67. doi:10.1111/j.1574-6941.2011.01277.x
Cameron, R.E. 1972. Farthest south algae and associated bacteria. phycologia, 11: 133-139
Cameron, R.E., Devaney, J.R. 1970. Antarctic soil algal crust: scanning electron and optical microscope study. Transactions of the American Microscopy Society, 89: 264-273
Carlson, C.A., Bates, N.R., Ducklow, H.W., Hansell, D.A. 1999. Estimation of bacterial respiration and growth efficiency in the Ross Sea, Antarctica. Aquatic Microbial Ecology, 19 (3): 229-244
Canfield, D.E., Green, W.J. 1985. The cycling of nutrients in a closed-basin Antarctic lake. Lake Vanda. Biogeochemistry, 1: 233-256
Castello, J.D., Rogers, S.O., Starmer, W.T., Catranis, C.M., Ma, L., Bachand, G.D., Zhao, Y., Smith, J.E. 1999. Detection of tomato mosaic tobamovirus RNA in ancient glacial ice. Polar Biology, 22:207-212.
Chandler, D. M., Alcock, A.D., Wadham, J.L., Mackie, S.L., Telling, J. Seasonal changes of ice surface characteristics and productivity in the ablation zone of the Greenland Ice Sheet. The Cryosphere Discuss., 8, 1337–1382, 2014
http://www.the-cryosphere-discuss.net/8/1337/2014/
Charlesworth, J.K. 1957. the quaternary era. London, Edward Arnold, 1: 60pp
Cho, S.M., Kang, B.R., Han, S.H., Anderson, A.J., Park, J-Y, Lee, Y-H, Cho, B.H., Yang, K-Y, Ryu, C-M, Kim, Y.C. 2008. 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Molecular Plant-Microbe Interactions 21, 1067-1075.
Christner, B.C., Kvitko, B.H., Reeve, J.N. 2003. Molecular identification of bacteria and eukarya inhabiting an Antarctic cryoconite hole. Extremophiles, 7: 177-183
Cook, J. 2012. Microbially mediated carbon fluxes on the surface of glaciers and ice sheets. PhD thesis, University of Sheffield, 30th August, 2012. http://etheses.whiterose.ac.uk/id/eprint/2882
Cook, J., Hodson, A., Telling, J., Anesio, A., Irvine-Fynn, T, Bellas, C. 2010. The mass-area relationship within cryoconite holes and its implications for primary production. Annals of Glaciology, 51 (56): 106-110
Cook, J.M., Hodson, A.J., Anesio, A.M., Hanna, E., Yallop, M., Stibal, M., Telling, J., Huybrechts, P. 2012. An improved estimate of microbially mediated carbon fluxes from the Greenland ice sheet. Journal of Glaciology, 58 (212): 1098-1108
Cutler, P.M., Munro, D.S. 1996. Visible and near infra-red reflectivity during the ablation period on Peyto Glacier, Alberta, Canada, Journal of Glaciology, 42: 333-340
Dancer, S.J., Shears, P., Platt, D.J. 1997. Isolation and characterization of coliforms from
glacial ice and water in Canada’s high Arctic. J. Appl. Microbiol. 82:597-609
Dastych, H., Kraus, H., Thaler, K. 2003. Redescription and notes on the biology of the glacier tardigrada Hypsibius klebelsbergi Mihelcic, 1959 (Tardigrada), based on material from the Otzal Alps, Austria. Mitt. Hamb. Zool. Mus. Inst, 100: 73-100
DeSmet, W.H. 1988. Rotifers from Bjornoya (Svalbard) with the description of Cephalodella evabroedi n. sp. And Synchaeta lakowitziana arctica n. subsp. Fauna norv. Series A, 9: 1-18
DeSmet, W.H. 1990. Notes on the monogonont rotifers from submerged mosses collected on Hopen (Svalbard). Fauna norv. Series A, 11: 1-8
DeSmet, W.H. 1993. Report on rotifers from Barentsoya, Svalbard (78’30’N). Fauna norv. Series A, 14: 1-26
DeSmet, W.H., Van Rompu, E.A., Beyens, L. 1988. Contribution to the rotifers and aquatic Tardigrada of Edgeoya (Svalbard). Fauna norv. Series A, 9: 19-30
Drygalski, E. von. 1897. Die Kryokonitlocher. Gronland-expedition der Gesellschaftfur Erdkunde zu Berlin 1891-1893, Bd 1: 93-103
Dyson, J.L. 1963. The world of ice. Crescent Press, London, pp.292
Edwards, A., and 7 others. 2011. Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard. ISME Journal, 51 (1): 150-160
Edwards, A., Rassner, S.M., Anesio, A.M., Worgan, H.J., Irvine-Fynn, T.D.L., Williams, H.W., Sattler, B., Griffith, G.W. 2013a. Contrasts between the cryoconite and ice marginal bacterial communities of Svalbard glaciers. Polar Research, 32: 19468
Edwards, A., Douglas, B., Anesio, A., Rassner, S.M., Irvine-Fynn, T.D.L., Sattler, B., Griffith, G.W. 2013b. A distinctive fungal community inhabiting cryoconite holes on glaciers in Svalbard. Fungal Ecology, 6: 168-176
Edwards, A., Pachebat, J.A., Swain, M., Hegarty, M., Hodson, A., Irvine-Fynn, T.D.L., Rassner, S.M., Sattler, B. 2013c. A metagenomic snapshot of taxonomic and functional diversity in an alpine glacier cryoconite ecosystem. Environmental Research Letters, 8 (035003): 11pp
Edwards, A., Mur, L., Girdwood, S., Anesio, A., Stibal, M., Rassner, S., Hell, K., Pachebat, J., Post, B., Bussell, J., Cameron, S., Griffith, G., Hodson, A. 2014. Coupled cryoconite ecosystem structure-function relationships are revealed by comparing bacterial communities in Alpine and Arctic glaciers. FEMS Microbial Ecology, in press
Edwards, A.E., Irvine-Fynn, T., Mitchell, A.C., Rassner, S.M.E. 2014. A germ theory for glacial systems? WIREs Water 2014, doi: 10.1002/wat2.1029
Etienne, E. 1940. Expeditionsbericht der Gronland-Expedition der Universitat Oxford 1938. Veroff. Des Geophys. Inst. Der Univ. Leipzig, Series II, 8 (reviewed by Ahlmann, H.W. 1940, Geografiska Annaler, 24: 23-50)
Fogg, G.E. 1967. Observations on the snow algae of the South Orkney Islands. Philosophical transactions of the Royal Society London, B Biological Sciences, 252: 279-287
Fogg, G.E. 1998. The Biology of Polar Habitats, Oxford University Press, Oxford, UK.
Foreman, C.M., Sattler, B., Mikuchi, J.A., Porazinska, D.L., Priscu, J.C. 2007. Metabolic activity and diversity of cryoconites in the Taylor Valley, Antarctica. Aquatic Geochemistry, 10: 239-268
Fountain, A.G., Dana, G.L., Lewis, K.J., Vaughn, B.H., McKnight, D. 1998. Glaciers of the McMurdo Dry Valleys, Southern Victoria Land, Antarctica. In Priscu, J.C. (ed) Ecosystem dynamics in a polar desert: the McMurdo dry valleys, Antarctica. 72: 65-75, AGU, Washington DC.
Fountain, A.G., Lyons, W.B., Burkins, M.B., Dana, G.L., Doran, P.T., Lewis, K.J., McKnight, D.M., Moorhead, D.L., Parsons, A.N., Priscu, J.C., Wall, D.H., Wharton, R.A., Virginia, R.A. 1999. Physical controls on the Taylor Valley ecosystem, Antarctica. Bioscience, 49 (12): 961-971
Fountain, A.G., Tranter, M., Nylen, T.H., Lewis, K.J., Meuller, D.R. 2004. Evolution of cryoconite holes and their contribution to melt-water runoff from glaciers in the McMurdo Dry Valleys, Antarctica. In Priscu, J.C. (ed) Ecosystem dynamcs in a polar desert: the McMurdo Dry Valleys, Antarctica, Washington, DC: American Geophysical Union, 323-335
Fountain, A.G., Nylen, T.H., Tranter, M., Bagshaw, E. 2008. Temporal variations in physical and chemical features of cryoconite holes on Canada Glacier, McMurdo Dry Valleys, Antarctica. Journal of Glaciology, 50: 35-45
Franzmann, P.D. 1996. Examination of Antarctic prokaryotic diversity through molecular comparisons. Biodiversity Conservation, 5: 1295-1305
Franzmann, P.D., Liu, Y., Balkwill, D.L., Aldrich, H.C., Conway de Marcario, E., Boone, D.R. 1997. Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antarctica. Int. J. Sys. Bacteriol. 47: 1068-1072.
Freitag, S., Hogan, E.J., Crittenden, P.D., Allison, G.G., Thain, S.C. 2011. Alterations in the metabolic fingerprint of Cladonia portentosa in response to atmospheric nitrogen deposition. Physiologia Plantarum, 143 (2): 107-114
Fritsch, F.E. 1917. Freshwater algae. British Antarctic (“Terra Nova”) Expedition, 1910, Natural History Report. British Museum (Natural History): 1 – 16
Fritsen, C.H., Priscu. J.C. 1998. Cyanobacterial assemblages in permanently ice covers on Antarctic lakes: distribution, growth rate, and temperature response of photosynthesis. J. Phycol. 34:587-597.
Fuhrman, J.A., Azam, F. 1980. Bacterioplankton secondary production estimates for coastal waters of British Colombia, Antarctica, and California. Applied Environmental Microbiology, 39 (6): 1085-1095
Fujii, Y. 1977. Field experiment on glacier ablation under a layer of debris cover. Japanese Society of Snow and Ice (Seppyo), 39 (special issue): 20-21
Gajda, R.T. 1958. Cryoconite phenomena on the Greenland ice cap in the Thule area. The Canadian Geographer, 3 (12): 35-44
Garrett, T.J., Verzella, L.L. An evolving history of Arctic aerosols. Bulletin of the American Meteorological Society, 89 (3): 299 – 302
Garric, R.K. 1965. The cryoflora of the pacific northwest. American Journal of Botany, 52: 1-8
Geiger, R. 1961. Das klima der bodennahen luftschicht. Vierte Auflage. Braunsweig, Freidrich Vieweg. Translated as: The climate near the ground. Translated by Scripta Technica, Inc. Cambridge, Mass. Harvard University Press, 1965
Gerdel, R.W., Drouet, F. 1960. The cryoconite of the Thule area, Greenland. Transactions of the American Microscopical Society, 79 (3): 256-272
Gibson, M. 2013. A quantitative investigation into the influence of cryocontie distribution and spatial extent on glacier surface albedo. MSc Thesis, Aberystwyth University, 2013
Goelles, T., Boggild, C.E. 2015. Albedo reduction caused by black carbon and dust accumulation: a quantitative model applied to the western margin of the Greenland Ice Sheet. The Cryosphere Discuss., 9, 1345–1381, 2015 www.the-cryosphere-discuss.net/9/1345/2015/
Graham-Watson, I. 1977. Cryoconite distribution and development on the Gorner glacier. B.A. thesis, Cambridge University, Cambridge, UK
Gribbon, P.W. 1979. Cryoconite holes on Sermikaysak, West Greenland. Journal of Glaciology, 22: 177-181
Grρngaard A., P.J.A. Pugh, and S.J. McInnes. 1999. Tardigrades, and other cryoconite biota on the Greenland ice sheet. Zoologischer Anzeiger (Germany) 238:211-214.
Hallbeck, L. 2009. Microbial processes in glaciers and permafrost: a literature study on microbiology affecting groundwater at ice sheet melting. Microbial Analytics Sweden AB, Swedish Nuclear Fuel and Management Co. October 2009
Hell, K., Edwards, A., Zarsky, J., et al. 2013. The dynamic bacterial communities of a melting High Arctic glacier snowpack. ISME Journal, 7: 1814-1826.
Hittson, T. 2010. Cryoconite evolution and formation on an Arctic glacier surface: a case study and model. MSc Thesis, University Centre in Svalbard
Hobbs, H. 1910. Characteristics of inland-ice of the Arctic regions. Proceedings of the American Philosophical Society, 49 (194): 57-129
Hodson, A.J. 2014. Understanding the dynamics of black carbon and associated contaminants in glacial systems. WIREs Water 2014, 1: 141-149.
Hodson, A.J., Tranter, M. 1999. Contemporary CO2 drawdown by glacial meltwater fluxes from high Arctic Svalbard, Interactions Between the Cryosphere, Climate and Greenhouse Gases (Proceedings of the IUGG 99 Symposium HS2, Birmingham, July 1999). IAHS Publ. 256, 1999
Hodson, A.J., Mumford, P.N., Kohler, J., Wynn, P.M. 2005. The High Arctic glacial ecosystem: new insights from nutrient budgets. Biogeochemistry, 72: 233-256
Hodson, A.J., and 10 others. 2007. A glacier respires: quantifying the distribution and respiration CO2 flux of cryoconite across Arctic supraglacial ecosystem. Journal of Geophysical Research, 112 (G4): G04S36
Hodson, A., Anesio, A.M., Tranter, M., Fountain, A., Osborn, M., Priscu, J., Laybourn-Parry, J., Sattler, B. 2008. Glacial Ecosystems. Ecological monographs, 78 (1): 41-67
Hodson, A., Cameron, K., Boggild, C., Irvine-Fynn. T., Langford, H., Pearce, D., Banwart, S. 2010a. The structure, biological activity and biogeochemistry of cryoconite aggregates upon an Arctic valley glacier: Longyearbreen, Svalbard. Journal of Glaciology, 56 (196): 349-362
Hodson, A.J., Boggild, C., Hanna, E., Huybrechts, P., Langford, H., Cameron, K., Houldsworth, A. 2010b. The cryoconite ecosystem on the Greenland ice sheet. Annals of Glaciology, 51 (56): 123-129
Hodson, A.J., Roberts, T.J., Engvall, A-C., Holmen, K., Mumford, P. 2010c. Glacier ecosystem response to episodic nitrogen enrichment in Svalbard, European High Arctic. Biogeochemistry, 98: 171-184
Hodson, A., Paterson, H., Westwood, K., Cameron, K., Laybourn-Parry, J. 2013. A blue-ice ecosystem on the margins of the East Antarctic ice sheet. Journal of Glaciology, 59 (214): 255-268
Hoffman, P.F., Schrag, D.P. 2000. Snowball Earth. Scientific American, 282: 68-75
Hoffman, P.F., Schrag, D.P. 2002. The snowball Earth hypothesis: testing the limits of global change. Terra Nova, 14: 129-155
Hoffman, P.F., Kaufman, A.J., Halverson, G.P., Schrag, D.P. 1998. A Neoporterozoic snowball Earth. Science, 281: 1342-46
Hoffman, M.J., Fountain,m A.G., Liston, G.E. 2014. Near-surface internal melting: a substantial mass loss on Antarctic Dry Valley glaciers. Journal of Glaciology, 60 (220): 361-374
Hoham, R.W. 1976. The effect of coniferous litter and different snow meltwaters upon the growth of two species of snow algae in axigenic culture. Arctic and Alpine Research, 8: 377-386
Hoham, R.W. 1980. Unicellular chlorophytes – snow algae. In: Cox, E.R (ed). Phyoflagellates. New York: Elsevier, North Holland, 61-84
Hoham, R.W., Blinn, D.W. 1979. Distribution of cryophilic algae in an arid region, the American Southwest. Phycologia, 18: 133-145
Hoham, R.W., Roemer, S.C. 1979. The life history and ecology of the snow algae Chloromonas brevispina comb. Nov. (Chlorophyta, Volvocales). Phycologia18: 55-70
Howard-Williams, C., Vincent,W.F. 1989. Microbial communities in southern Victoria Land streams (Antarctica) I. Photosynthesis. Hydrobiologia, 172: 27-38, 1989.
IPCC. 2013: Summary for Policymakers. In: Climate Change 2013: The Physical Basis. Contribution of Working Group 1 to the fifth assessment Report of the Intergovernmental Panel on Climate Change (Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M (eds)). Cambridge University press, Cambridge, UK and New York, NY, USA.
Irvine-Fynn, T.D.L., Bridge, J.W., Hodson, A.J. 2011. In situ quantification of supraglacial cryoconite morphodynamics using time lapse imaging: an example from Svalbard. Journal of Glaciology, 57 (204): 651-657
Irvine-Fynn, T.D.L., Edwards, A., Newton, S., Langford, H., Rassner, S.M., Telling, J., Anesio, A.M., Hodson, A.J. 2012. Microbial cell budgets of an Arctic glacier surface quantified using flow cytometry. Environmental Microbiology, 14 (11): 2998-3012
Irvine-Fynn, T.D.L., Edwards, A. 2013. A frozen asset: the potential of flow cytometry in constraining the glacial biome. Cytometry, Part A, Communication to the Editor, international Society for Dvancement of Cytometry, doi:10.1002/cyto.a.22411
Jannsens, I., Huybrechts, P. 2000. The treatment of meltwater retardation in mass balance parameterizations of the Greenland Ice Sheet. Annals of Glaciology, 31: 133-140
Jepsen, S.M., E.E. Adams and J.C. Priscu. 2010. Sediment Melt-Migration Dynamics in Perennial Antarctic Lake Ice. Arctic, Antarctic, and Alpine Research, 42: 57-66.
Jilloggek, W.C., Rolfsen, N. 1896. Friedhof Nansen 1861 – 1893. Translated by William Archer, Longmans, green and Co. London, New York and Bombay, 1896.
Jones, H.G. 1999. The ecology of snow-covered systems: a brief overview of nutrient cycling and life in the cold, Hydrological Processes, 13, 2135 – 2147.11
Jorgenson, D., Sorlin, S. 2013. Northscapes: History, technology and the making of northern environments. UBC Press, 2013
Kayastha, R.B., Takeuchi, Y., Nakawo, M., Ageta, Y. 2000. Practical prediction of ice melting beneath various thickness of debris cover on khumbu Glacier, Nepal, using a positive degree-day factor. In: Nakawo, M., Raymond, C.F., Fountain, A. (eds): Debris-Covered Glaciers . Proceedings of the Seattle Workshop, September 2000. IAHS Publ. no. 264
Kayser, 1928. The inland ice in Greenland. Copenhagen, 1: 381-384
Kim, S.J., Shin, S.C., Hong, S.G. 2012. Genome Sequence of Janthinobacterium sp. Strain PAMC 25724, Isolated from Alpine Glacier Cryoconite. Journal of Bacteriology, 194: 2096
Kohshima, S., 1984a. A novel, cold tolerant insect found in a Himalayan glacier. Nature, 310: 225-227
Kohshima, S. 1984b. Living micro-plants in the dirt layer dust of Yala glacier. In: Higuchi, K (ed): Glacial studies in Langtang Valley. Nagoya: Data Centre for Glacier Research, Japanese Society of Snow and Ice Office, 91-97
Kohshima, S. 1985. Patagonian glaciers and insect habitats. In: Nakajima, C (ed): Glaciological Studies in Patagonian Northern Icefield, Data Centre for Glacier Research, Japanese Society of Snow and Ice, Publ. 3: 94-99
Kohshima, S. 1987a. Glacial biology and biotic communities. In: Kawano. S., Connell, J.H., Hidaka, T. (eds), Evolution and Coadaptation in Biotic Communities, Faculty of Science, Kyoto university, 77-92
Kohshima, S. 1987b. Formation of dirt layers and surface dust by micro-plant growth in Yala (Dakspatsen) Glacier, Nepal Himalayas. Bulletin of Glacier Research, 5: 63-68
Kohshima, S. 1989. Glaciological importance of micro-organisms in the surface mud-like materials and dirt layer particles of the Chongce Ice Cap and Gohza Glacier, West Kunlun Mountain, China. Bulletin of Glacier Research, 7: 59-66
Kohshima, S., Seko, K., Yoshimura, Y. 1993. Biotic acceleration of glacier melting in Yala Glacier, Langtang region, Nepal Himalaya. IAHS Publication 218 (Symposium at Kathmandu 1992 – Snow and Glacier Hydrology): 309 – 316
Kohshima, S., Yoshimura, Y., Seko, K., Ohata, T. 1994. Albedo reduction by biotic impurities on a perennial snow patch in the Japan alps. Snow and Ice Covers: Interactions with the Atmosphere and Ecosystems (Proceedings of the Yokohama Symposia, J2 and J5, July 1993. IAHS Publ. 223
Kol, E. 1941. The green snow of Yellowstone National Park. American Journal of Botany, 28: 185-191
Kol, E. 1942. The snow and ice algae of Alaska. Smithsonian Miscellaneous Collections, 101: 1-36
Kol, E. 1968. Kryobiologie: Biologie und limnologie des schnees und eises 1. In: Elster, H.J., Ohle, W (eds). Kryovegetation. Stuttgart: E Schweizerbart’sche Verlagsbuchhandlung (Nagele & Obermiller): 216 pp.
Kol, E. 1969. The red snow of Greenland. II. Acta Botanica Academiae Scientarum Hungaricae, 15 (3-4): 281-289
Kol, E., Eurola, S. 1974. Red snow algae from Spitsbergen. Astarte, 7: 61-66
Kol, E., Flint, E.A. 1968. Kryobiologie. Biologie und limnologie des schnees und eises. I. Kryovegetation. In Thiemann, A (founder), Elster, H.J., Ohle, W (eds)., Die Binnengewsser, 24. Stuttgart: E Schweizerbart’sche Verlagsbuchhandlung, 216pp.
Kol, E., Peterson, J.A. 1976. Cryobiology. In Hope, G.S., Peterson, J.A., Radok, U., Allison, I (eds), The equatorial glaciers of New Guinea: Results from the 1971-1973 Australian Universities expeditions to Irian jaya: Survey, glaciology, meteorology, biology and palaeoenvironments. Rotterdam: Balkema, 81-91
Kozak, K., Polkowska, Z., Ruman, M., Kozioł, K., Namieśnik, J. 2013. Analytical studies on the environmental state of the Svalbard archipelago provide a critical source of information about anthropogenic global impact. Trends in Analytical Chemistry, 50: 107 – 126
Kuhlman, H. 1959. Weather and ablation observations at Sermikavsak in Umanak district. Meddelelser om Gronland, 158 (5): 19-50
Lancaster, N. 2002. Flux of eolian sediment in the McMurdo Dry Valleys, Antarctica: a preliminary assessment. Arctic, Antarctic and Alpine Research, 34: 318-323
Langford, H. 2012. The microstructure, biogeochemistry and aggregation of Arctic cryoconite granules. PhD Thesis, University of Sheffield, 2012
Langford, H., Hodson, A., Banwart, S., Boggild, C. 2010. The microstructure and biogeochemistry of Arctic cryoconite granules. Annals of Glaciology, 51 (56): 87-94
Langford, H., Hodson, A., Banwart, S. 2011. Using FTIR spectroscopy to characterise the soil mineralogy and geochemistry of cryoconite from Aldegondabreen glacier, Svalbard. Applied Geochemistry, 26S206-S209
Langford, H. J., Irvine-Fynn, T. D. L., Edwards, A., Banwart, S. A., and Hodson, A. J.: A spatial investigation of the environmental controls over cryoconite aggregation on Longyearbreen glacier, Svalbard, Biogeosciences Discuss., 11, 3423-3463, doi:10.5194/bgd-11-3423-2014, 2014.
Larose, C., Dommergue, A., Vogel, T. 2013. Microbial nitrogen cycling in Arctoc snowpacks. Environmental Research Letters, 8: 035004 (9pp)
Lee, Y.M., Kim, S-Y., Jung, J., Kim, E.H., Cho, K.H., Schinner, F., Margesin, R., Hong, S.G., Lee, H.K. 2011. Cultured bacterial diversity and human impact on alpine glacier cryoconite. Journal of Microbiology, 49 (3): 355-362
Leslie, A., (1879) The Arctic Voyages of Adolf Erik Nordenskiöld. MacMillan and Co., London, UK, 447 pp.
Light, J.J., Belcher, J.H. 1968. A snow microflora in the Cairngorm Mountains, Scotland. Brit.Phycol.Bull. 3, 471-473
Liljequist, G.H. 1956. Energy exchange of an Antarctic snow field. Shortwave radiation (Maudheim, 71ᵒ03’ S, 10ᵒ56’W). Norwegian-British-Swedish-Antarctic Expedition, 1949-1952. Scientific Results, 2 (part 1A)
Ling, H.U., Seppelt, R.D. 1990. Snow algae of the Windmill Islands, continental Antarctica. Mesotaenium berggrenii (Zygnematales, Chlorophyta) an alga of grey snow. Antarctic Science, 2: 143-148
Lizotte, M.P., T.R. Sharp and J.C. Priscu. 1996. Phytoplankton dynamics in the stratified water column of Lake Bonney, Antarctica I. Biomass and productivity during the winter-spring transition. Polar, 16, 155-162, 1996.
Ma, L.J., Catranis, C., Starmer, W.T., Rogers, S.O.1999. Revival and characterisation of fungi from ancient polar ice. Mycologist, 13: 70-73
MacClune, K.L., Fountain, A.G., Kargel, J.S., MacAyeal, D.R. 2003. Glaciers of the McMurdo Dry Valleys: terrestrial analog for Martian polar sublimation. Journal of Geophysical Research, 108 (E4): 5031
MacDonald, R. 1989. Nils Adolf Erik Nordenskiold (1832 – 1901), Arctic Profiles, The Arctic Institute of North America, Calgary, 1989.
MacDonnell, S., Fitzsimons, S. 2008. The formation and hydrological significance of cryoconite holes. Progress in Physical Geography, 32: 595-610
MacDonnell, S., Fitzsimons, S. 2012. Observations of cryoconite hole system processes on an Antarctic glacier. Revista Chilena de Historia Natural, 85: 393-407
Mader, H. 1992. Observations of the water-vein system in polycrystalline ice. Journal of Glaciology, 38: 333-347
Margesin, R., Fell, J.W. 2008. Mrakiella cryoconite gen. nov., sp. Nov., a psychrophilic, anamorphoc, basidiomycetous yeast from alpine and arctic habitats. International Journal of Systematic and Evolutionary Microbiology, 58: 2977-2982
Margesin, R. Haggblom, M,M. 2007. Thematic issue: Microorganisms in cold environments. FEMS Microbiological Ecology 59: 215-216
Margesin, R., Zacke, G., Schinner, F. 2002. Characterization of heterotrophic 14 microorganisms in Alpine glacier cryoconite. Arctic, Antarctic, and Alpine Research, 34, 88-15 93.
Mattson, L.E., Gardner, J.S., Young, G.J. 1993. Ablation on debris covered glaciers: an example from the Rakhiot Glacier, Panjab, Himalaya. In: Young, G.J (ed): Snow and Glacier Hydrology. Proceedings of the Kathmandu Symposium, November 1992., IAHS publ. no. 218: 289-296
McIntyre, N.F. 1984. Cryoconite hole thermodynamics. Canadian Journal of Earth Science, 21: 152-156
McKay, C.P., Stoker, C.R. 1989. The early environment and its evolution on Mars: implications for life. Rev. Geophys. 27:189-214.
McKnight, D.M., Tate, C.M. 1995. Algal mat distribution in glacial melt water streams in Taylor Valley, Southern Victoria Land, Antarctica, Antarctic Journal of the U.S., 287-289
Mellor, M. 1977. Engineering properties of snow. Journal of Glaciology, 19 (2): 15-66
Melnikov, I.A. 1997. The Arctic sea ice ecosystem. Amsterdam, Gordon and Breach Sci. Publ., 204p
Menard, H.W. 1950. Transportation of sediment by bubbles. Journal of Sedimentary Petrology, 20 (2): 98-106
Meuller, D.R., Pollard, W.H. 2004. Gradient analysis of cryoconite ecosystems from two polar glaciers. Polar Biology, 27: 66-74
Meuller, D.R., Vincent, W.F., Pollard, W.H., Fritsen, C.H. 2001. Glacial cryoconite ecosystems: a bipolar comparison of algal communities and habitats. Nova Hedwiga Beiheft, 123: 173-197
Mieczen, T., Gorniak, D., Swiatecki, A., Zdanowski, M., Tarkowska-Kukuryk, M., Adamczuk, M. 2013. Vertical microzonation of ciliates in cryoconite holes in Ecology Glacier, King George Island, Polish Polar Research, 34 (2): 201-212
Mills, W.J. 2003. Exploring Polar Frontiers: A historical encyclopedia (Volume 1) ABC-CLIO, 2003
Ming, J., Du, Z., Ziao, C., Xu, X., Zhang, D. 2012. Darkening of the mid-Himalaya glaciers since 2000 and the potential causes. Environmental Research letters, 7 (014021): 13pp
Miteva, V., Rinehold, K., Sowers, T., Sebastian, A., Brenchley, J. 2015. Abundance, viability and diversity of the indigenous microbial populations at different depths of the NEEM Greenland ice core. Polar Research 2015, 34, 25057, http://dx.doi.org/10.3402/polar.v34.25057
Murray, J. 1910. On collecting at Cape Royds. In: Murray, J (ed) British Antarctic Expedition 1907 – 1909 Reports on Scientific Expeditions, Vol.1 Biology, pp 1-15 Heinemann, London
Nagatsuka, N., Takeuchi, N., Nakano, T., Shin, K., Kokado, E. 2014. Geogrphical variations in Sr and Nd isotopic ratios of cryoconite on Asian glaciers. Environmental Research Letters, 9 (045007): 11pp
Nakawo, M., Takahashi, S. 1982. A simplified model for estimating glacier ablation under a debris layer. In: Glen, J.W. (ed): Hydrological aspects of Alpine and High-Mountain Areas. Proceedings of the Exeter Symposium, July 1992), IAHS Publ. no.138: 137-145
Nakawo, M., Young, G.J. 1982. Estimate of glacier ablation under a debris layer from surface temperature and meteorological variables. Journal of Glaciology, 28 (98): 29-34
Nansen, F. 1906. The Norwegian North Polar expedition 1893-1896: Scientific results. Longmans, Green and Co., London, New York and Bombay.
Nobles, L.H. 1960. Glaciological investigations, Nunatarssuaq ice ramp, north west Greenland. United States Army Corps of Engineers, Snow, Ice and Permafrost Research Establishment, Research Report 66.
Noell, A.C., Abbey, W.J., Anderson, R.C., Ponce, A. 2014. Radiocarbon dating of dust layers and soils at Kilimanjiro’s Northern Ice Field. The Holocene, 24 (10): 1398-1408
Nordenskjold, A.E. 1875. Cryoconite found 1870, July 19th-25th, on the inland ice, east of Auleitsivik Fjord, Disco Bay, Greenland; Geol. Mag., Decade 2, 2, 157-162.
Nordenskiöld, A. E., 1883: Nordenskiöld on the inland ice of Greenland. Science, 2, 732–739.
Nordenskiold, A.E., 1888. La Seconde expédition suédoise au Gronland: (l’inlandsis et la côte orientale) : entreprise aux frais de Oscar Dickson / A.-E. Nordenskiold ; traduite du suédois avec l’autorisation de l’auteur parCharles Rabot. Hachette, Paris, 482 pp..
Nordenskiold, E. 1900. Floating stones. Nature, 61: 278
Nordin, A., Schmidt, I.K., Shaver, G.R. 2004.Nitrogen uptake by Arctic soil microbes and plants in relation to soil nitrogen supply. Ecology 85: 955–962
Odell, N.E. 1949. Ice worms in Yukon and Alaska. Nature, 64: 1098
Oerlemans, J; Gleisen, R.H; Van Der Broecke, M.R. 2009. Retreating alpine glaciers: increased melt rates due to accumulation of dust (Vadret da Morteratsch, Switzerland. Journal of Glaciology, 55 (192): 729-736
Olson, J.B., Steppe, T.F., Litaker, R.W., Paerl, J.W. 1998. N2 –fixing microbial consortia associated with the ice cover of Lake Bonney, Antarctica. Microbial Ecology, 36: 231-238
Paerl, H.W., Priscu. J.C. 1998. Microbial phototrophic, heterotrophic, and diazotrophic activities associated with aggregates in the permanent ice cover of Lake Bonney, Antarctica. Microb. Ecol. 36:221-230.
Paige, R.A. 1968. Sub-surface melt pools in the McMurdo Ice Shelf, Antarctica. Journal of Glaciology, 7: 511-516.
Parker, B.C., Boyer, S., Allnut, F.C.T., Seaburg, K.G., Wharton, R.A., Simmons, G.M. 1982a. Physical, chemical and biological characteristics of soils from the Pensacola Mountains, Antarctica. Soil Biology and Biochemistry, 14: 265-271
Parker, B.C., Simmons, G.M., Seaburg, K.G., Cathey, D., Allnut, F.C.T. 1982b. Comparative ecology of plankton communities in seven Antarctic oasis lakes. Journal of Plankton Research, 4: 271-286
Parker, B.C., Simmons, G.M., Wharton, R.A., Seaburg, K.G., 1982c. Removal of organic and inorganic matter from Antarctic lakes by aerial escape of blue-green algal mats. Journal of Phycology, 18: 72-78
Paultier, B.G., Dubnick, A., Sharp, M., Simpson, A.J., Simpson, M.J. 2013. Comparison of cryoconite organic matter composition from Arctic and Antarctic glaciers at the molecular level. Geochimica et Cosmochimica Acta, 104: 1-18
Pearce, D.A., Bridge, P.D., Hughes, K.A., Sattler, B., Psenner, R., Russell, N.J. 2009. Microorganisms in the atmosphere over Antarctica. FEMS Microbiology Ecology, 69 (2): 143-157
Peary, R.E. 1898. Northward over the ‘Great Ice’: a narrative of life and work along the shores and upon the interior ice cap of Northern Greenland in the years 1886 and 1891-1897, Part 1 – Reconnaissance of the Greenland inland ice, 1886. Cambridge University Press, 1898 (described by Hobbs 1910)
Philipp, H. 1912. Uber die beziehungen der kryokonitlocher zu den Schmelzschalen und ihren Einfluss auf die ablationsverhaltnisse arktische glatscher. Zeitschrift der Geologischen Gesellschaft, 64 (11): 489-505
Podgorny, I.A., Grenfell, T.C. 1996. Absorption of solar energy in a cryoconite hole. Geophysical Research letters, 23: 2465-2468
Pollock, R. 1970. What colours are mountain snow? Sierra Bulletin, 55: 18-20
Porazinska, D.L., Fountain, A.G., Nylen, T.H., Tranter, M., Virginia, R.A., Wall, D.H. 2004. The biodiversity and biogeochemistry of cryoconite holes from McMurdo Dry Valley glaciers, Antarctica. Arctic, Antarctic and Alpine Research, 36: 84-91
Poser, H. 1934. Uber abschmeltzformen aug dem ogstronlondischen packeise und landeise. Zeitschrift fur Gletscherkunde, 21: 1-20
Priscu J.C. 1995. Phytoplankton nutrient deficiency in lakes of the McMurdo Dry Valleys, Antarctica, Freshwater Biology, 34: 215-227.
Priscu, J.C. (ed) 1998. Ecosystem dynamics in a Polar desert: The McMurdo Dry Valleys, Antarctica. AGU, 72: 65-75, AGU, Washington DC
Priscu, J.C. 1999. Life in the valley of the “dead”. Biogeoscience, 49 (12): 959
Priscu, J.C., Christner, B.C. 2004. Earth’s icy biosphere. In Microbial Diversity and Bioprospecting, A Bull (ed), Chapter 13, ASM Press, Washington DC
Priscu, J.C., Fritsen, C.H., Adams, E.E., Giovannoni, S.J., Paerl, H.W., McKay, C.P., Doran, P.T., Gordon, D.A., Lanoil, B.D., Pinckney, J.L. 1998. Perennial Antarctic lake ice: an oasis for life in a polar desert. Science 280:2095-2098.
Priscu, J.C., Wolf, C.F., Takacs, C.D., Fritsen, C.H., Laybourn-Parry, J., Roberts, E.C., Berry Lyons, W. 1999a. Carbon transformations in the water column of a perennially ice-covered Antarctic Lake. Bioscience 49:997-1008.
Priscu, J.C., Adams, E.E., Lyons, W.B., Voytek, M.A., Mogk, D.W., Brown, R.L., McKay, C.P., Takacs, C.D., Welch, K.A., Wolf, C.F., Kirschtein, J.D., Avci. R. 1999b. Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 286:2141-2144.
Prowse, T.D., Wrona, F.J., Reist, J.D., Gibson, J.J., Hobbie, J.E., Levesque, L.M.J., Vincent, W.F. 2006. Climate change effects on hydroecology of Arctic freshwater ecosystems. AMBIO, 35 (7): 347-358
Psenner, R., Sattler, B., Willie, A., Fritsen, C.H., Priscu, J.C., Felip, M., Catalan, J. 1999. Lake Ice Microbial Communities in Alpine and Antarctic Lakes. p. 17-31. In Schinner, P., Margesin, R. (eds.) Adaptations of Organisms to Cold Environments. Springer-Verlag.
Pugh, P.J.A., McInnes, S.J. 1998. The origin of Arctic terrestrial and freshwater tardigrades. Polar Biology, 19: 177-182
Quesada, A., Vincent, W.F., Lean, D.R.S. 1999. Community and pigment structure of Arctic cyanobacterial assemblages: the occurrence and distribution of UV-absorbing compounds. FEMS Microbial Ecology, 28: 315 – 323
Richters, F. 1911. Faune des mousses. Tardigrades. Duc d’Orleans. Campagne arctique de 1907. Impr. Sci. C. Buelens, Bruxelles: 1-20
Sattler, B., Puxbaum, H., Psenner, R. 2001. Bacterial growth in supercooled cloud droplets. Geophysical Research Letters, 28: 239-242
Sattler, B., Wille, A., Waldhuber, S., Sipiera, P., Psenner, R. 2002. Various ice ecosystems in alpine and polar regions – an overview. Proceedings of the Second European Workshop on Exo/Astrobiology. Graz, Austria, 16-19 September 2002 (ESA SP-518)
Sattler, B., Storrie-Lombardi., M.C., Foreman, C.M., Tilg, M., Psenner, R. 2010. Laser-induced fluorescence emission (LIFE) from lake Fryxell (Antarctica) cryoconites. Annals of Glaciology, 51(56): 145-152
Sauberer, F. 1938. Versuche uber spektrale Messungen der strahlungseigenschaften von schnee und eis mit photoelemen. Meteorologische Zeitschrift, 55 (7): 250-255
Säwström, C., Mumford, P., Marshall, W., Hodson, A., Laybourn-Parry, J. 2002. The microbial communities and primary productivity of cryoconite holes in an Arctic glacier (Svalbard 79 degrees N). Polar Biology, 25: 591-596
Säwström, C., Granéli,W., Laybourn-Parry,J., Anesio, A.M. 2007. High viral infection 1 rates in Antarctic and Arctic bacterioplankton. Environmental Microbiology, 9: 250-255.
Scherling, C., Roscher, C., Giavalisco, P., Schultze, E-D., Weckworth, W. 2010. Metabolomics unravel contrasting effects of biodiversity on the performance of individual plant species. PLoS ONE, 5 (9), doi: 10.1371/journal.pone.0012569
Schulze-Makuch, D., Grinspoon, D.H. 2005. Biologically enhanced energy and carbon cycling on Titan? Astrobiology, 5: 560-567
Schuster, C.J. 2001. Weathering crust processes on melting glacier ice (Alberta, Canada). MSc Thesis, Theses and Dissertations (Comprehensive), Wilfred Laurier University, Paper 489
Seaburg, K.G., Parker, B.C., Wharton, R.A., Simmons, G.M. 1981. Temperature-growth responses of algal isolates from Antarctic oasis lakes. Journal of Phycology, 17: 353-360
Segawa, T., Takeuchi, N. 2010. Cyanobacterial communities in Qiyi glacier, Qilian Shan, China. Annals of Glaciology, 51(56): 135-144
Segawa, T., Takeuchi, N., Rivera, A., Yamada, A., Yoshimura, Y., Barcaza, G., Shinbori, K., Motoyama, H., Kohshima, S., Ushida, K. 2013. Distribution of antibiotic resistance genes in glacier environments. Environmental Microbiology Reports, Thematic Issue on Environmental Ecology of Pathogens and Resistances, 5 (1): 127-134
Segawa, T., Ishii, S., Ohte, N., Akiyoshi, A., Yamada, A., Maruyama, F., Li, Z., Hongoh, Y., Takeuchi, N. 2014. The nitrogen cycle in cryoconites: naturally occurring nitrification-denitrification granules on a glacier. Environmental Microbiology (2014) doi:10.1111/1462-2920.12543
Sharp, R.P. 1947. The Wolf Creek Glaciers, St Elias Range, Yukon Territory. The Geographical Review, 37: 26-52
Sharp, R.P. 1949. Studies of superglacial debris on valley glaciers. American Journal of Science, 247: 289-315
Sharp, M., Parkes, J., Cragg, B., Fairchild, I.J., Lamb, H., Tranter, M. 1999. Bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling. Geology, 27: 107-110
Simmons, G.M. Jr., Vestal, J.R., Wharton, R.A. 1993. Environmental regulators of microbial activity in continental Antarctic lakes, in Physical and Biogeochemical Processes in Antarctic Lakes, Antarctic Research Series., 59, edited by W.J. Green and E.I. Friedmann, pp. 165-195, AGU, Washington, D.C., 1993
Simon, C., Wiezer, A., Strittmatter, A.W., Daniel, R. 2009. Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Applied and Environmental Microbiology, 75 (23): 7519
Singh, P., Singh, S.M. 2012. Characterisation of yeasts and filamentous fungi isolated from cryoconite holes of Svalbard, Arctic. Polar Biology, 35: 575-583
Singh, S.M., Sharma, J., Gawas-Sakhalkar, P., Upadhyay, A.K., Naik, S., Pednecker, S.M., Ravindra, R. 2013. Atmospheric deposition studies of heavy metals in Arctic by comparative analysis of lichens and cryoconite. Environmental Montoring Assessments, 18: 1367-1376
Singh, P., Hanada, Y., Singh, S.M., Tsuda, S. 2014. Antifreeze protein activity in Arctic cryoconite bacteria. FEMS Microbiology Letters, 351: 14-22
Sjöling, S., Cowan, D.A. 2003. High 16S rDNA bacterial diversity in glacial meltwater lake sediment, Bratina Island, Antarctica. Extremophiles, 7: 275 – 282.
Solomon, K.V., Haitjema, C.H., Thompson, D.A., O’Malley, M. 2014. Extracting data from the muck: deriving biological insight from complex microbial communities and non-model organisms with next generation sequencing. Current Opinion in Biotechnology, 28: 103-110
Souchez, R., Janssens, M., Lemmens, M., Stauffer, B. 1995. Very low oxygen concentration in basal ice from Summit, Central Greenland. Geophysical Research Letters, 22:2001-2004.
Souchez,R., Bouzette, A., Clausen, H.B., Johnsen, S.J., Jouzel. J. 1998. A stacked mixing sequence at the base of the Dye 3 core. Geophysical Research Letters, 25:1943-1946.
Steinbock, O. Cryoconite holes and their biological significance. Zeit. f. Gletscherkunde, 24: 1-21
Stibal, M., Sabacka, M., Kastova, K. 2006. Microbial communities on glacier surfaces in Svalbard: impact of physical and chemical properties on abundance and structure of cyanobacteria and algae. Microbial Ecology, 52 (4): 644-654
Stibal, M., Elster, J., Sabacka, M., Kastovska, K. 2007. Seasonal and diel changes in photosynthetic activity of the snow alga Chlamydomonas nivalis (Chlorophycaea) from Svalbard determined by pulse amplitude modulation fluorometry. FEMS Microbial Ecology, 59: 265-273
Stibal, M., Tranter, M. 2007. Laboratory investigations of inorganic carbon uptake by cryoconite debris from Werenskioldbreen, Svalbard. Journal of Geophysical Research, 112 (G4): G04S33
Stibal, M., Tranter, M., Benning, L.G., Rehak, J. 2008a. Microbial primary production on an Arctic glacier is insignificant compared with allochthonous organic carbon input. Environmental Microbiology, 10 (8): 2172-2178
Stibal, M., Tranter, M., Telling, J., Benning, L.G. 2008b. Speciation, phase association and potential bioavailability of phosphorous on a Svalbard glacier. Biogeochemistry, 90: 1-13
Stibal, M., Anesio, A.M., Blues, C.J.D., Tranter, M. 2009. Phosphatase activity and organic phosphorous turnover on a high Arctic glacier. Biogeosciences, 6: 913-922
Stibal, M., Lawson, E.C., Lis, G.P., Mak, K.M., Wadham, J.L., Anesio, A.M. 2010. Organic matter content and quality in supraglacial debris across the ablation zone of the Greenland ice sheet. Annals of Glaciology, 51 (56): 1-8
Stibal, M., Telling, J., Cook, J., Mak, K.M., Hodson, A., Anesio, A.M. 2012a. Environmental controls on microbial abundance on the Greenland ice sheet: a multivariate analysis approach. Microbial Ecology, 63: 74-84
Stibal, M., Baelum, J., Holben, W.E., Sorenson, S.R., Jensen, A., Jacobsen, C.S. 2012b. Microbial degradation of 2,4-Dichlorophenoxyacetic acid on the Greenland ice sheet. Applied and Environmental Microbiology, 78 (15): 5070
Stibal, M., Sabacka, M., Zarsky, J. 2012c. Biological processes on glacier and ice sheet surfaces. Nature Geoscience, 5: 771-774
Stibal M, Gözdereliler E, Cameron KA, Box JE, Stevens IT, Gokul JK, Schostag M, Zarsky JD, Edwards A, Irvine-fynn TD and Jacobsen CS .2015. Microbial abundance in surface ice on the Greenland Ice
Sheet. Front. Microbiol. 6:225. doi:10.3389/fmicb.2015.00225
Sugden, J.C., Mott, P.G. 1940. Oxford University Greenland Expedition, 1938. Geographical Journal, 95: 43-51
Swann, L. 1992. The aeolian biome. Bioscience, 42 (4): 262-270
Takacs, C.D., Priscu, J.C. 1998. Bacterioplankton dynamics in the McMurdo Dry Valley lakes, Antarctica. Microbial Ecology, 36 (3): 239-250
Takeuchi, N. 2002. Optical characteristics of cryoconite (surface dust) on glaciers: the relationship between light absorbency and the property of organic matter contained in the cryoconite. Annals of Glaciology, 34: 409-414
Takeuchi, N. 2009. Temporal and spatial variations in spectral reflectance and characteristics of surface dust on Gulkana Glacier, Alaska Range. Journal of Glaciology, 55 (192): 701-709
Takeuchi, N., Kohshima, S., Fujita, K. 1998. Snow algae community on a Himalayan glacier, Glacier AX010 East Nepal: Relationship with glacier summer mass balance. Bulletin of Glacier Research, 16 (1998): 43-50
Takeuchi, N., Kohshima, Y., Seko, K., Fujita, K. 2000. Characteristics of cryoconite holes on a Himalayan glacier, Yala Glacier central Nepal. Bulletin of Glacioloical Research, 17: 51-59
Takeuchi, N., Kohshima, S., Goto-Azuma, K., Koerner, R.M. 2001a. Biological characteristics of dark coloured material (cryoconite) on Canadian Arctic glaciers (Devon and Penny ice caps). Mem. National Institute of Polar Research, Special Issue 54: 495-505
Takeuchi, N., Kohshima, S., Seko, K. 2001b. Structure, formation and darkening process of albedo-reducing material (cryoconite) on a Himalayan glacier: a granular algal mat growing on the glacier. Arctic, Antarctic and Alpine Research, 33 (2): 115-122
Takeuchi, N., Kohshima, S., Shiraiwa, T., Kubota, K. 2001c. Characteristics of cryoconite (surface dust on glaciers) and surface albedo of a Patagonian glacier, Tyndall Glacier, Southern Patagonia Icefield, Bulletin of Glaciological Research, 18, 65-69
Takeuchi, N., Li, Z. 2008. Characteristics of surface dust on Urumqi Glacier No.1 in the Tien Shan Mountains, China. Arctic, Antarctic and Alpine Research, 40 (4): 744-750
Takeuchi, N., Nishiyama, H., Li, Z. 2010. Structure and formation process of cryoconite granules on Urumqi glacier No.1, Tien Shan, China. Annals of Glaciology, 51 (56): 9-14
Takeuchi, N., Nagatsuka, N., Uetake, J., Shimada, R. 2014. Spatial variations in impurities (cryoconite) on glaciers in northwest Greenland. Bulletin of Glaciological Research, 32: 85-94
Tedesco, M., Foreman, C.M., Anton, J., Steiner, N., Schwartzmann, T. 2013. Comparative analysis of morphological, mineralogical and spectral properties of cryoconite in jakobshavn Isbrae, Greenland, and Canada Glacier, Antarctica. Annals of Glaciology, 54(63): 147-157
Telling, J., Anesio, A.M., Hawkings, J., Tranter, M., Wadham, J.L., Hodson, A.J., Irvine-Fynn, T.D.L., Yallop, M.L. 2010. Measuring rates of gross photosynthesis and net community production in cryoconite holes: a comparison of field methods. Annals of Glaciology, 51 (56): 135-144
Telling, J., Anesio, A.M., Tranter, M., Irvine-Fynn, T.D.L., Hodson, A., Butler, C., Wadham, J. 2011. Nitrogen fixation on Arctic glaciers, Svalbard. Journal of Geophysical Research, doi: 10.1029/2010JG001632
Telling, J., Stibal, M., Anesio, A.M., Tranter, M.L., Nias, I., Cook, J., Lis, G., Wadham, J.L., Sole, A., Nienow, P., Hodson, A.J. 2012a. Microbial nitrogen cycling on the Greenland Ice Sheet. Biogeosciences,
Telling, J., Anesio, A.M., Tranter, M., Stibal, M., Hawkings, J., Irvine-Fynn, T.D.I., Hodson, A., Butler, C., Yallop, M., Wadham, J. 2012b. Controls on the autochthonous production and respiration of organic matter in cryoconite holes on high Arctic glaciers. Journal of Geophysical Research, 117 (G01017)
Thacker, D.R., Babcock, H. 1957. The mass culture of algae. Journal of Solar Energy Science and Engineering, 1 (1): 37-50
Tranter, M., Brown, G., Raiswell, R., Sharp, M., Gurnell, A. 1993. A conceptual model of solute acquisition by Alpine glacial meltwaters. Journal of Glaciology, 39: 573-581
Tranter, M., Brown, G., Hodson, A., Gurnell, A., Sharp, M. 1994. Variations in the nitrate concentration of glacial runoff in Alpine and sub-Polar environments. Snow and ice covers: interactions with the atmosphere and ecosystems. In: Proceedings of Yokohama Symposia J2 and J5, July 1993. IAHS Publ. no. 423 (223): 299-311
Tranter, M., Fountain, A.G., Fritsen, C.H., Lyons, W.B., Priscu, J.C., Statham, P.J., Welch, K.A. 2004. Extreme hydrochemical conditions in natural microcosms entombed within Antarctic ice. Hydrological Processes, 18: 379-387
Tranter, M., Fountain, A.G., Lyons, W.B., Nylen, T.H., Welch, K.A. 2005. The chemical composition of runoff from Canada Glacier, Antarctica: implications for glacier hydrology during a cool summer. Annals of Glaciology, 40: 15-19
Tranter, M., Bagshaw, E.A., Fountain, A.G., Foreman, C.M. 2010. The biogeochemistry and hydrology of McMurdo Dry Valley glaciers: Is there life on Martian ice now? In Doran, P.T. (ed), Life in Antarctic deserts and other cold, dry environments: Astrobiological analogues. Cambridge: Cambridge University press, 195 – 220
Uetake, J., Naganuma, T., Hebsgaard, M.B., Kanda, H., Kohshima, S. 2010. Communities of algae and cyanobacteria on glaciers in west Greenland. Polar Science, 4: 71-80
Van der Hage, H.H. 1992. Interpretation of field measurements made with a portable albedometer. Journal of Atmospheric and Oceanic Technology, 9: 420-425
Vincent, W.F. 1988. Microbial assemblages of Antarctica. Studies in Polar Research, Cambridge University press, Cambridge. Pp304
Vincent, W.F., Howard-Williams, C. 1994. Nitrate rich inland waters of the Ross Ice Shelf region, Antarctica, Antarctic Science, 6: 339-346
Vincent, W.F., Quesada, A. 1997. Microbial niches in the polar environment and the escape from UV radiation in non-marine habitats. In. Battaglia, B., Valencia, J., Walton, D. (eds): Antarctic Communities: Species, structure and survival. Cambridge university Press, Cambridge: 388-395
Vincent, W.F., Howard-Williams, C. 2000. Letters: Life on Snowball Earth. Science, 287: 2421
Vincent, W.F., Gibson, J.A.E., Pienitz, R., Villenueve, V. 2000. Ice shelf microbial ecosystems in the high arctic and implications for life on Snowball Earth’ Naturwissenschaften, 87:137-141
Vincent, W.F. 2007. Cold tolerance in cyanobacteria and life in the cryosphere. In: Seckbach, J (ed) Algae and cyanobacteria in extreme environments. Springer
Wagner, A. 1938. Zur entstehung von kryokonitlochern. Zeitschrift fur Gletscherkunde, 26 (1-2): 129-137
Warren, S.G. 1982. Optical properties of snow. Review of Geophysics and Space Physics, 20: 67-89
Warren, S.G., Wiscombe, W.J. 1980. A model for the spectral albedo of snow. II. Snow containing atmospheric aerosols. Journal of Atmospheric Science, 37: 2734-2745
Wegener, A. 1930. Deutsche inlandeis-expedition nach Gronland sommer 1929. Z. Ges. Erdkunde, 64: 810124
Wentworth, S.J., Gibson, E.K., Velbel, M.A., McKay, D.S. 2005. Antarctica dry valleys and indigenous weathering in mars meteorites: implications for water and life on Mars. Icarus, 174 (2): 383-395
Wei, Y., Tandong, Y., Baiqing, X., Hang, Z. 2010. Influence of supraglacial debris on summer ablation and mass balance in the 24K glacier, South-East Tibetan Plateau. Geografiska Annaler, 92 (3): 353-360
Wharton, R.A., Vinyard, W.C. 1983. Distribution of snow and ice algae in North America. Madrono, 30: 201-209
Wharton, R.A., Vinyard, W.C., Parker, B.C., Simmons, G.M., Seaburg, K.G. 1981. Algae in cryoconite holes on Canada glacier in southern Victoria Land, Antarctica. Phycologia, 20: 208-211
Whittrock, V.B. 1885. Ueber die Scnee- und Eisflora, besonders in den arktischen Gegenden. Nebst einem Anhang Ueber die Schnee- und Eisfauna. In A.E. Nordenskiold: Studien un Firschungen veranlasst durch meine Reisen im hohen Norden. Rockhaus, Leipzig: 65-119
Wientjes, I.G.M., Van de Wal, R.S.W., Reichart, G.J., Sluijs, A., Oerlemans, J. 2011. Dust from the dark region in the western ablation zone of the Greenland ice sheet. The Cryosphere, 5: 589-601
Wilhelm, L., Singer, G.A., Fasching, C., Battin, T.J., Besemer, K. 2013. Microbial biodiversity in glacier-fed streams. ISME Journal, 7: 1651 – 1660
Willerslev, E., Hansen, A.J., Christensen, B., Steffensen, J.P., Arctander. P. 1999. Diversity of Holocene life forms in fossil glacier ice. Proc. Natl. Acad. Sci., 96:8017-8021
Xu, Y., Simpson, A.J., Eyles, N., Simpson, M.J. 2009. Sources and molecular composition of cryoconite organic matter from the Athabasca Glacier, Canadian Rocky Mountains. Organic Geochemistry 41: 177-186.
Yallop, M.L., Anesio, A.J., Perkins, R.G., Cook, J., Telling, J., Fagan, D., MacFarlane, J., Stibal, M., Barker, G., Bellas, C., Hodson, A., Tranter, M., Wadham, J., Roberts, N.W. 2012. Photophysiology and albedo-changing potential of the ice-algal community on the surface of the Greenland ice sheet. ISME Journal, 6: 2302 – 2313
Yoshimura, Y., Kohshima, S., Ohtani, S. 1997. A community of snow algae on a Himalayan glacier: change of algal biomass and community structure with altitude. Arctic and Alpine Research, 29: 126-137
Zarsky, J.D., Stibal, M., Hodson, A., Sattler, B., Schostag, M., Hansen, L., Jacobsen, C.S., Psenner, R. 2013. Large cryoconite aggregates on a Svalbard glacier support a diverse microbial community including ammonia-oxidising archaea. Environmental Research Letters, 8 (035044): 11pp
Zawierucha, K., Coulson, S., Michalcyzk., Kaczmarek, L. 2013. Current knowledge of the Tardigrada of Svalbard with the first records of water bears from Nordaustlandet (High Arctic). Polar Research, 32: 20886
Zhanga, S., Houb, S., Yanga, G., Wang, J. 2010. Bacterial community in the East Rongbuk Glacier,
Mt. Qomolangma (Everest) by culture and culture-independent methods. Microbiological Research 165 (2010) 336—345
One thought on “A Cryoconite Bibliography”